
On computational problems for infinite
argumentation frameworks:
Hardness of finding acceptable extensions

Luca San Mauro (University of Bari)
AI3 2024, Free University of Bozen-Bolzano

Joint work with Uri Andrews

1

Setting the ground

Here’s a sobering yet fundamental lesson coming from
argumentation theory: deciding whether to accept an
argument is computationally really hard.

To be more precise, we focus on the admissible, stable, and
complete semantics for (Dung-style) argumentation
frameworks (AF).

Recall that a conflict-free extension S of a given AF F = (AF ,RF) is:

• admissible, S ∈ ad(F), if S is self-defending;

• stable, S ∈ stb(F), if S attacks all arguments outside itself;

• complete, S ∈ co(F), if S is admissible and defends no
argument outside itself.

2

The complexity landscape (in the finite setting)

So, here’s the complexity of popular decision problems for
these semantics:

σ Credσ Skeptσ Existσ Nempσ Uniσ
ad NP-c trivial trivial NP-c coNP-c
stb NP-c coNP-c NP-c NP-c DP-c
co NP-c P-c trivial NP-c coNP-c

C-c denotes completeness for the class C

This brings us to the core question of our research: What does
this table look like when we analyze infinite AFs?

3

Formalizing our question

A basic problem that one encounters when attempting to
calibrate the algorithmic complexity of infinite AFs is that of
describing infinite objects in a finitary way. Fortunately,
computability theory offers a wide range of tools designed for
this endeavour.

Here, we will concentrate on AFs that are computably
presentable, in the sense that there are Turing machines (or,
equivalently, modern computer programs) that, in finitely many
steps, decide whether a given pair of arguments belongs to the
attack relation.

Let’s be more formal!

4

Introducing computable AFs

Let (ϕe)e∈N be a uniform enumeration of all partial
computable functions from N to {0, 1} and let 〈·, ·〉 : N×N → N
be a computable bijection.

Definition

• A number e is a computable index for an AF F = (AF ,RF)
with AF = {an : n ∈ N} if

ϕe(〈n,m〉) =

1 if an � am
0 otherwise;

• An AF F is computable, if it has a computable index e ∈ N.

5

Formalizing our computational problems

For a semantics σ:

• Cred∞σ := {〈e,n〉 : (∃S ∈ σ(Fe))(an ∈ S)};
• Skept∞σ := {〈e,n〉 : (∀S ∈ σ(Fe))(an ∈ S)};
• Exist∞σ := {e : (∃S ⊆ AFe))(S ∈ σ(Fe))};
• Nemp∞σ := {e : (∃S ∈ σ(Fe))(S 6= ∅)};
• Uni∞σ := {e : (∃!S ⊆ AFe)(S ∈ σ(Fe))}.

It turns out that the complexity classes that most naturally
match these problems are those of the Σ11 and Π11 sets.

6

Σ1
1: The infinitary analog of NP

The Σ11 sets are formally defined as those subsets of N that are
definable in the language of second-order arithmetic using a
single second-order existential quantifier ranging over subsets
of N. Π11 sets are the complements of Σ11 sets.

Intuition: Just as NP allows a search over sets in the finite
setting, Σ11 allows a search over sets in the infinite setting. Just
as NP-complete means that there is no shortcut over searching
over all sets, Σ11-complete means that there is no shortcut over
searching over all sets.

7

Complexity in the infinite setting

(Andrews, S.): The next table collects the promised complexity
results about infinite AFs:

σ Cred∞σ Skept∞σ Exist∞σ Nemp∞σ Uni∞σ
ad Σ11-c trivial trivial Σ11-c Π11-c
stb Σ11-c Π11-c Σ11-c Σ11-c Π11-c
co Σ11-c Π11-c trivial Σ11-c Π11-c

It may be useful to compare it with the one for finite AFs:

σ Credσ Skeptσ Existσ Nempσ Uniσ
ad NP-c trivial trivial NP-c coNP-c
stb NP-c coNP-c NP-c NP-c DP-c
co NP-c P-c trivial NP-c coNP-c

8

How to show Σ1
1/Π1

1-hardness?

Just as you show NP-completeness of a set by reducing a
known NP-complete problem (e.g., SAT) to it, we show
Σ11-completeness of a set by reducing a known Σ11-complete
problem to it. To describe such a problem, we need to
introduce trees and paths.

A set T ⊆ N∗ of finite sequences of natural numbers is a tree if
it is closed under prefixes. Recall that λ denotes the empty
string. Here are a couple of trees.

9

λ

0 1

10 11

The tree {λ, 0, 1, 10, 11}. (Keep this tree in mind!)

10

λ

0

01 02 03 0k

1

11

111

1k

The tree {λ, 0} ∪ {0k, 1k : k > 0}.

.

11

Finding paths through trees

A path through T is an infinite sequence of natural numbers
all of whose prefixes are in T .

The problem of determining if a tree in N∗ has paths is as hard
as it could be:

Theorem (Kleene)

A set X ⊆ N is Σ11 iff there is a computable sequence of
computable trees (T X

n)n∈N so that n ∈ X iff T X
n has a path.

Corollary: The set of indices for computable trees which have a
path is Σ11-complete.

12

Coding trees into AFs: Don’t read this slide!

Given any tree T ⊆ N∗, we define an AF FT = (AT ,RT).

The set of arguments AT of FT is computable and consists of
{aσ : σ ∈ T } ∪ {bσ : σ ∈ T } ∪ {c}. The attack relation RT of FT

contains all and only the following edges:

For all σ ∈ T ,

1. bσ � bσ ;

2. bσ � aσ ;

3. aσ � bτ , if |σ| = |τ |+ 1;

4. aσ � aτ , if |σ| = |τ |+ 1 and τ 6� σ;

5. c � aτ for every τ ∈ T ;

6. aλ � c.

How about a picture-example?
13

Enconding the tree {λ, 0, 1, 10, 11} into an AF:

aλ

a0 a1

a10 a11

14

Enconding the tree {λ, 0, 1, 10, 11} into an AF:

aλ

a0 a1

a10 a11

14

Enconding the tree {λ, 0, 1, 10, 11} into an AF:

aλ

a0 a1

a10 a11

bλ

b0 b1

b10 b11

14

Enconding the tree {λ, 0, 1, 10, 11} into an AF:

aλ

a0 a1

a10 a11

bλ

b0 b1

b10 b11

14

Enconding the tree {λ, 0, 1, 10, 11} into an AF:

aλ

a0 a1

a10 a11

bλ

b0 b1

b10 b11

14

Enconding the tree {λ, 0, 1, 10, 11} into an AF:

aλ

a0 a1

a10 a11

bλ

b0 b1

b10 b11

14

Enconding the tree {λ, 0, 1, 10, 11} into an AF:

aλ

a0 a1

a10 a11

bλ

b0 b1

b10 b11

c

14

Enconding the tree {λ, 0, 1, 10, 11} into an AF:

aλ

a0 a1

a10 a11

bλ

b0 b1

b10 b11

c

14

Enconding the tree {λ, 0, 1, 10, 11} into an AF:

aλ

a0 a1

a10 a11

bλ

b0 b1

b10 b11

c

14

Enconding the tree {λ, 0, 1, 10, 11} into an AF:

aλ

a0 a1

a10 a11

bλ

b0 b1

b10 b11

c

14

Characterizing extensions of FT

Lemma: A non-empty extension S of FT is admissible iff S is
complete iff S is stable iff S is exactly {aσ : σ ≺ π} for some π a
path through T .

This construction shows all of the claimed hardness results
(lower bounds of complexity). Let’s see one.

Theorem (Andrews, S.)

Cred∞ad is Σ11-complete.

Proof: For any tree T , we produce FT and take e the index for FT .
Then 〈e,aλ〉 ∈ Cred∞ad iff there is a path π through T . Thus, we reduce
the Σ1

1-complete problem of determining whether a tree has a path
to Cred∞ad.

15

Moral: Infinite AFs cannot be approximated

Let’s conclude by highlighting an interesting byproduct of our
theorems:

Those hesitant to venture into infinitary argumentation may
suggest that any countably infinite argumentation framework
(AF) F could be approximated by an increasing sequence of
finite AFs (Ft)t∈N, where each Ft represents the agent’s
knowledge at time t —after that, one may hope that analyzing
such a sequence would provide enough insight about F .

Nonetheless, a consequence of our findings is that, in general,
there is absolutely no hope to understand acceptance of
arguments in F in terms of some kind of limiting procedure
studying the sequence (Ft)t∈N.

16

Thank you!

16

