# A Vector-Based Extension of Value-Based Argumentation for Public Interest Communication

Pietro Baroni<sup>1</sup>, Giulio Fellin<sup>1</sup>, Massimiliano Giacomin<sup>1</sup>, Carlo Proietti<sup>2</sup>

<sup>1</sup>Università degli Studi di Brescia, <sup>2</sup>Consiglio Nazionale delle Ricerche

2024 November 28









We acknowledge financial support from MUR project PRIN 2022 EPICA "Enhancing Public Interest Communication with Argumentation" (CUP D53D23008860006) funded by the European Union - Next Generation EU.

#### Introduction

Introduction

Public Interest Communication (PIC) aims to promote beneficial behaviours/policies through persuasive arguments.

- Challenges in PIC campaigns:
  - Ineffectiveness/backfire due to diverse audiences and poorly targeted messaging.
  - Practitioners rely on experience, lacking formal methods to analyse outcomes.
- Computational argumentation
  - Reconstruct debates: Identify arguments and their relationships (attacks/supports).
  - Assess justification: Evaluate arguments using formal semantics.
- Focus of this work: Modelling diverse audiences using vector-based value frameworks:
  - Builds on Bench-Capon's value-based approach and its extensions.
  - Attributes multi-dimensional value vectors to arguments, enabling nuanced analysis.
  - Supports theories like Schwartz's human values frameworks.

#### The framework

We consider a triple  $\langle A, \rightarrow, A^{pos} \rangle$  where

- $\blacksquare$   $\langle A, \rightarrow \rangle$  is an argumentation framework, i.e.
  - A is a set of arguments, and
  - lacktriangle  $\to$  is a binary relation  $\to \subseteq A \times A$ —we read  $a \to b$  as "a attacks b;"
- $\blacksquare$   $A^{pos} \subseteq A$  will be the set of arguments expressing the goals of the considered communication campaign.

Let's consider a campaign for a greener diet:

```
A^{pos} = \{a_1 : Less chronic disease, better overall health and less foodborne illness,
          a<sub>2</sub>: Better environment: soil, water, air,
          a<sub>3</sub>: Less animal suffering.
```

- $A = A^{pos} \cup \{b_1 : Veganism may be unhealthy, e.g. different blood types need different diets,$ 
  - b<sub>2</sub>: Morality is relative,
  - $b_3$ : Plant-based agriculture still causes harm,
  - $b_4$ : Not everyone can be vegan,
  - $b_{\mathbf{5}}$ : There are worse things going on in the world, this is a secondary cause,
  - b6: The world is a tough place, so we have to deal with bad things,
  - $c_1$ : Vegan athletes exist,
  - $c_{\mathbf{2}}$ : Many nutritional experts state that veganism can be healthy and optimal,
  - c3: The blood-type diet theory has been debunked,
  - $c_{\mathbf{4}}$ : Most people are not moral relativists about unnecessary suffering,
  - $c_{\mathbf{5}}$ : Recognising that the world is cruel is in not an excuse to do harm,
  - $c_{\mathbf{6}}\colon \mathsf{The}\ \mathsf{goal}\ \mathsf{is}\ \mathsf{to}\ \mathsf{make}\ \mathsf{progress},\ \mathsf{no}\ \mathsf{one}\ \mathsf{expects}\ \mathsf{the}\ \mathsf{world}\ \mathsf{to}\ \mathsf{become}\ \mathsf{perfect},$
  - $\emph{d}_{1}$ : Experts are influenced by financial interests and agendas,
  - $d_2$ : Not all experts agree,
  - $e_{\textbf{1}}: \ \text{There is consensus among independent experts about the health benefits.}\}$

The set of audiences is a set of the form  $I = \{1, 2, 3, ..., k\}$ , of cardinality k. To each audience  $i \le k$  we associate a weight  $p_i$ . Weights satisfy the following conditions:

$$\forall_{i\leqslant k} p_i\geqslant 0,$$

$$\sum_{i=1}^{k} p_i = 1.$$

#### The values

#### We define

• the space of values as  $V = [0,1]^n$ , each dimension of which is associated with the corresponding value;

Convincing arguments

■ the value function val:  $A \rightarrow V$ , which assigns each  $a \in A$  to its vector of values.

In this preliminary paper, we do not argue for a specific set of values, as it falls outside the scope of the present work. For illustrative purposes we follow the list of classes of values from [Kiesel et al., 2022]:

- Self-direction: thought
- Self-direction: action
- Stimulation
- Hedonism
- Achievement
- Power: dominance
- Power: resources

- Face
- 9 Security: personal
- 10 Security: societal
- Tradition
- 12 Conformity: rules
- 13 Conformity: interpersonal
- Humility

- Benevolence: caring
- Benevolence: dependability

- 17 Universalism: concern
- 18 Universalism: nature
- 19 Universalism: tolerance
- 20 Universalism: objectivity

| 2rm                   |    |    |   |   |    |    |    |    |    |    | value | :S |    |    |    |    |    |    |    |    |
|-----------------------|----|----|---|---|----|----|----|----|----|----|-------|----|----|----|----|----|----|----|----|----|
| arg.                  | 1  | 2  | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 11    | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| $a_1$                 | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | 1  | .6 | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| a <sub>2</sub>        | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | .6 | 0     | 0  | 0  | 0  | 0  | .7 | 0  | 1  | 0  | 0  |
| <i>a</i> <sub>3</sub> | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | .2 | 0  | .6 | .9 | 0  | 0  |
| $b_1$                 | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | 1  | .6 | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| $b_2$                 | .8 | .7 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | .2 | 0  | .4 | 0  |
| <i>b</i> <sub>3</sub> | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | .6 | 0  | 0     | 0  | 0  | 0  | 0  | .7 | 0  | 1  | 0  | 0  |
| <i>b</i> <sub>4</sub> | 0  | 0  | 0 | 0 | 0  | 0  | .9 | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | .6 | 0  | 0  | 0  |
| <i>b</i> <sub>5</sub> | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | .6 | 0  | 0  | .7 |
| <i>b</i> <sub>6</sub> | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | .7 |
| $c_1$                 | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | .4 | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | .9 |
| <i>c</i> <sub>2</sub> | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | .6 | .4 | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| C3                    | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | .6 | .4 | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| C4                    | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | .6 | 0  | 0  | 0  | 0  | .8 |
| C5                    | 0  | 0  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | .3 | 0     | 0  | 0  | 0  | .2 | .8 | .6 | 0  | 0  | .6 |
| <i>c</i> <sub>6</sub> | 0  | 0  | 0 | 0 | .6 | 0  | .6 | 0  | 0  | .6 | 0     | 0  | 0  | 0  | 0  | .7 | 0  | 0  | 0  | .6 |
| $d_1$                 | 0  | 0  | 0 | 0 | 0  | .3 | .4 | .3 | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | .7 |
| $d_2$                 | .4 | 0  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | .7 |
| $e_1$                 | .4 | 0  | 0 | 0 | 0  | 0  | 0  | 0  | .6 | .4 | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | .8 |

Each audience  $i \leq k$  will have their own preferences among values. We want to represent this by introducing the audience-specific value function asy:  $I \to V$ , which assigns to each audience i a vector whose ith entry represents the importance that audience i gives to value i.

Suppose that  $I = \{1, 2\}$ , and assign to asv the following values:

| ; |    | values |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| ' | 1  | 2      | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 1 | .7 | .6     | .4 | .3 | .5 | .4 | .3 | .4 | .7 | .8 | .3 | .4 | .5 | .6 | .8 | .7 | .9 | .8 | .8 | .7 |
| 2 | .7 | .8     | .3 | .2 | .7 | .6 | .6 | .5 | .7 | .6 | .8 | .8 | .7 | .5 | .6 | .7 | .5 | .5 | .6 | .6 |

We also set  $p_1 = .4$  and  $p_2 = .6$ .

## The impact measure

For audience i, the impact of an argument a is:

$$\|a\|_i = \frac{1}{\sqrt{n}}\|\operatorname{asv}(i) \odot \operatorname{val}(a)\|$$

Properties of  $\|\cdot\|_i$ :

- subadditivity,
- absolute homogeneity,
- monotonicity.

|   | arg.          | $a_1$ | $a_2$ | <i>a</i> <sub>3</sub> | $b_1$ | $b_2$ | <i>b</i> <sub>3</sub> | <i>b</i> <sub>4</sub> | $b_5$ | $b_6$ | $c_1$ | <i>c</i> <sub>2</sub> | <i>C</i> <sub>3</sub> | C4   | C <sub>5</sub> | c <sub>6</sub> | $d_1$ | $d_2$ | $e_1$ |
|---|---------------|-------|-------|-----------------------|-------|-------|-----------------------|-----------------------|-------|-------|-------|-----------------------|-----------------------|------|----------------|----------------|-------|-------|-------|
| ſ | $\ \cdot\ _1$ | .190  | .236  | .204                  | .190  | .177  | .236                  | .135                  | .163  | .110  | .154  | .196                  | .196                  | .165 | .208           | .196           | .119  | .126  | .183  |
| ĺ | $\ \cdot\ _2$ | .176  | .176  | .124                  | .176  | .186  | .176                  | .138                  | .115  | .094  | .136  | .172                  | .172                  | .134 | .170           | .201           | .120  | .113  | .165  |

Maximise overall effectiveness, i.e. find the  $a \in A^{pos}$  such that the following quantity is maximal:

•000000

$$\sum_{i=1}^{k} p_i \cdot ||a||_i$$

We have

$$\sum_{i=1}^{k} p_i \cdot ||a_1||_i = 0.4||a_1||_1 + 0.6||a_1||_1 \approx 0.182;$$

$$\sum_{i=1}^{k} p_i \cdot ||a_2||_i = 0.4||a_2||_1 + 0.6||a_2||_1 \approx 0.200;$$

$$\sum_{i=1}^{k} p_i \cdot ||a_3||_i = 0.4||a_3||_1 + 0.6||a_3||_1 \approx 0.156.$$

Hence the chosen argument is  $a_2$ .

## Possible Goal 2

Maximise number of convinced individuals i.e. find the  $a \in A^{pos}$  such that the following quantity is maximal:

Convincing arguments

$$\sum_{i=1}^k p_i \cdot \chi(\mathsf{con}_i(a))$$

Proposal for convincing argument:

$$con_i(b) \iff \forall_{a \to b} ||a||_i < ||b||_i$$

$$a_1 \stackrel{\frown}{\smile} b_1 \longleftarrow c_2$$

- **b**<sub>1</sub> is not convincing as it is defeated by  $c_2$ .
- $\blacksquare$   $a_1$  is also not convincing, as  $a_1$  and  $b_1$  mutually defeat.
- Intuitively, a₁ should be convincing, as its only defeater is itself defeated.

We use grounded semantics  $\mathcal{E}_{GR}(A)$  to identify convincing arguments. The algorithm to compute  $\mathcal{E}_{GR}(A)$ :

- 1 Start with undefeated arguments.
- 2 Recursively add arguments defended by the current set.
- 3 Stop when no more arguments can be added.

$$con_i(a) \iff a \in \mathcal{E}_{GR}(A)$$





We observe that arguments  $a_1$ ,  $a_3$  are convincing to audience 1, while arguments  $a_1$ ,  $a_2$  are convincing to audience 2. Therefore:

$$\sum_{i=1}^{k} p_i \cdot \chi(\mathsf{con}_i(a_1)) = 0.4 \cdot 1 + 0.6 \cdot 1 = 1;$$

$$\sum_{i=1}^{K} p_i \cdot \chi(\mathsf{con}_i(a_2)) = 0.4 \cdot 0 + 0.6 \cdot 1 = 0.6;$$

$$\sum_{i=1}^{k} p_i \cdot \chi(\mathsf{con}_i(a_3)) = 0.4 \cdot 1 + 0.6 \cdot 0 = 0.4.$$

Hence the chosen argument is  $a_1$ .

# Key insights and future directions

- Enhancing convincing arguments:
  - Apply Bayesian reasoning, machine learning, and datasets.
  - Tailor definitions to different campaign contexts.
- List-of-arguments campaigns:
  - Order and length of lists affect impact.
  - Ensure consistency (avoid conflicts) and cohesion (supportive arguments).
- Broader considerations:
  - Support already convinced individuals.
  - Address potential backlash or unintended effects.
  - Incorporate temporal strategies with evolving goals.
- Alternative perspectives:
  - Focus on conclusions rather than individual arguments.
  - Streamline for common ground and key divergences.

Thank you!