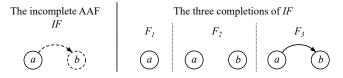
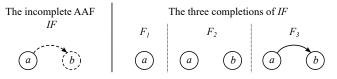
Preliminaries	Preliminaries	Motivation	Contribution	Contribution	Contribution	Contribution	Future work
O	O	O	O	O	O	O	

Quantitative Reasoning over Incomplete Abstract Argumentation Frameworks

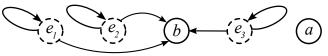

Bettina Fazzinga¹, Sergio Flesca², Filippo Furfaro², Giuseppina Monterosso²

¹DICES - University of Calabria, Italy {bettina.fazzinga}@unical.it ²DIMES - University of Calabria, Italy {flesca, furfaro, monterosso}@dimes.unical.it

8th Workshop on Advances in Argumentation in Artificial Intelligence - 2024


A brief review of Incomplete Abstract Argumentation Frameworks

- Incomplete Abstract Argumentation Frameworks (iAAFs) are AAFs where arguments and attacks can be marked as uncertain (as their occurrence in the argumentation graph is not guaranteed)
- The uncertainty is modeled qualitatively: no measure of the extent of the uncertainty is encoded (differently from quantitative approaches, such as *probabilistic AAFs, weighted AAFs,* etc.)
- An iAAFs compactly represents a set of alternative configurations of the argumentation graph, called *completions*



- The reasoning is based on the verification and acceptance problems under the possible and necessary perspective:
 - A set is a possible (resp., necessary) i*-extension if it is an extension in at least one (resp., every) completion;
 - An argument is possibly (resp., necessarily) accepted if it is accepted in at least one (resp., every) completion.
- Example. Under σ = co, the set {a} is a possible (but not necessary) i*-extension. a is necessarily skeptically accepted, b is possibly skeptically accepted.

Preliminaries Preliminaries Preliminaries Contribution Co

- The possible and necessary perspectives are "extreme" and may hide relevant issues
- **Example.** Under $\sigma = co$, both $S_1 = \{a\}$ and $S_2 = \{a, b\}$ are possible (but not necessary) i*-extensions. Indeed, S_1 is extension in 7 out of 8 completions (those where at least one among e_1 , e_2 , e_3 occurs) while S_2 in only 1 out of 8 completions (the completion where e_1 , e_2 , e_3 do not occur)

• If we replaced the possible and necessary perspective with a mechanism for counting the completions where a set is an extension, S_1 and S_2 would be no more indistinguishable!

Preliminaries Preliminaries Notivation Contribution Contr

- General (and challenging) scenario: a set \mathcal{D} of dependencies between arguments/attacks is specified to discard "unrealistic" completions
 - e.g. OR(a, b), NAND((a, b), (b, a)), CHOICE(a, b), etc.
- We introduce *a new quantitative reasoning paradigm* based on the problems:
 - PERCVER^σ(*IF*, D, S): Return the percentage of completions of the iAAF *IF* satisfying D where S is an extension;
 - PERCACC^{σ}(*IF*, D, *a*, *X*): Return the percentage of completions of the iAAF *IF* satisfying D where *a* is *X*-accepted ($X \in \{\text{credulously}, \text{skeptically}\}$);
 - CNTCOM(*IF*, *D*): Return the number of completions of the iAAF *IF* satisfying *D*.

- prAAFs (under the constellations approach) are iAAFs where a probability distribution function is defined over the completions
- Fundamental problems over prAAFs:
 - PROBVER and PROBACC: return the overall probability of the completions where *S* is an extension and *a* is accepted, respectively.
- QUESTION: Isn't it straightforward to encode the iAAF *IF* as a prAAF *PF* such that PROBVER^σ(*PF*, *S*)=PERCVER^σ(*IF*, D, S) and PROBACC^σ(*PF*, a, X)=PERCACC^σ(*IF*, D, a, X)?
- **ANSWER:** Surprisingly... NO! This would require an exponential-time computation.
 - *Hint:* defining the pdf of the prAAF requires knowing the number of completions, and we prove that CNTCOM is #P-complete

- **QUESTION:** Are there cases where the translation from iAAFs to prAAFs (for the purpose of solving PERCVER and PERCACC) is convenient (i.e. feasible in polynomial time)?
- Answer: Yes! This happens when both the following hold:
 - *D*=∅;
 - every uncertain attack in IF involves at least one certain argument
- The case above generalizes the cases:
 - only arguments can be uncertain
 - only attacks can be uncertain

Contribution 2: Complexity characterization

- General result: PERCVER and PERCACC are FP^{#P}-complete, and CNTCOM is #P-complete, even if D = Ø;
 - CNTCOM's hardness proved via a reduction from the problem of evaluating the overall weight of the homomorphisms between a graph and a weighted graph;
 - PERCVER's and PERCACC's hardness proved via a reduction from CNTCOM;

Preliminaries Preliminaries Motivation Contribution Contribution Contribution Contribution Future work

Contribution 2: Complexity characterization

- General result: PERCVER and PERCACC are FP^{#P}-complete, and CNTCOM is #P-complete, even if D = ∅;
 - CNTCOM's hardness proved via a reduction from the problem of evaluating the overall weight of the homomorphisms between a graph and a weighted graph;
 - PERCVER's and PERCACC's hardness proved via a reduction from CNTCOM;
- **Tractability island**: CNTCOM is in P if D = Ø and every uncertain attack involves at least one certain argument (the same form allowing easy translatability from iAAFs to prAAFs)

Preliminaries Preliminaries Motivation Contribution Contribution Contribution Contribution Future work

Contribution 2: Complexity characterization

- General result: PERCVER and PERCACC are FP^{#P}-complete, and CNTCOM is #P-complete, even if D = ∅;
 - CNTCOM's hardness proved via a reduction from the problem of evaluating the overall weight of the homomorphisms between a graph and a weighted graph;
 - PERCVER's and PERCACC's hardness proved via a reduction from CNTCOM;
- **Tractability island**: CNTCOM is in P if D = Ø and every uncertain attack involves at least one certain argument (the same form allowing easy translatability from iAAFs to prAAFs)
- **QUESTION:** Can we generalize this tractability result to the case $D \neq \emptyset$?
- ANSWER: Unfortunately, NO! If D contains some dependency (even of only one form among OR, NAND, CHOICE, IMPLY), even if in *IF* the uncertainty involves only arguments or only attacks, CNTCOM is #P-complete, and PERCVER and PERCACC are FP^{#P}-complete.

Preliminaries	Preliminaries	Motivation	Contribution	Contribution	Contribution	Contribution	Future work
O	O	O	O	O	O	O	●○
Future	e work						

- Extending the framework, towards the definition of the core of a complex analysis cockpit
 - · Simultaneously look into the counts of completions and extensions
 - Answer questions like: "How many sets of arguments are extensions in at least 80% of the completions?

Preliminaries O	Preliminaries O	Contribution O	Contribution O	Contribution O	Future work

Thank you!