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Aims of the talk

I In [NMR 2023] we have proposed a general approach to
define a many-valued preferential interpretation of gradual
argumentation semantics.
I it allows for conditional reasoning over arguments and

boolean combination of arguments through the verification of
graded (strict or defeasible) implications over an
argumentation graph (with respect to some gradual
semantics).

I In this paper we extend the formalism with the temporal
operators of Linear Time Temporal Logic (LTL), thus defining
a propositional many-valued temporal logic with typicality
I to reason about the dynamics of a weighted argumentation

graph;
I to prove properties about the transient behavior of a

(recurrent) neural network .



The approach

Given an argumentation graph G and a gradual semantics S,
satisfying weak conditions on the domain of argument
interpretation, we consider:
I a many-valued propositional logic with typicality, where

arguments play the role of propositional variables (inspired
to PTL and DLs with typicality)

I graded conditionals of the form T(α)→ β ≥ l , meaning that
“normally argument α implies argument β with degree at
least l” (with α and β boolean combination of arguments):

T(granted loan)→ high salary ∧ young ≥ 0.7

I We build a multi-preferential interpretation IS
G of a graph G

under a semantic S
I Verification of conditional properties over IS

G by model
checking



Domain of argument interpretation and argumentation
graphs: some assumptions

I We let the domain of argument interpretation be a set D,
equipped with a preorder relation ≤ [Baroni et al. 2019]

I Let a (weighted) argumentation graph be a tuple:

G = 〈A,R, σ0, π〉
- A is a set of arguments,
- R ⊆ A×A a set of edges,
- σ0 : A → D assigns a base score of arguments,
- π : R → R is a weight function assigning a positive or

negative weight to edges.

A pair (B,A) ∈ R is regarded as a support of argument B to
argument A when the weight π(B,A) is positive and as an
attack of argument B to A when π(B,A) is negative.



Many-valued labellings and gradual semantics

Figure: Example weighted argumentation graph G where the base
score is not represented

I A many-valued labelling (or strength function) σ of G over D
is a function σ : A → D, which assigns to each argument an
acceptability degree (or a strength) in D.

I A gradual semantics S for an argumentation graph G
identifies a set ΣS of labellings of the graph G over a domain
of argument valuation D (considering all possible σ0).



Example

I ϕ-coherent semantics [NMR 2022]:

σ(A) =
{
ϕ(W G

σ (A)) for all A ∈ A s.t. R−(A) 6= ∅
σ0(A) otherwise

where W G
σ (Ai) =

∑
Aj∈R−(Ai )

π(Aj ,Ai) σ(Aj)

I D equal to Cn = {0, 1
n , . . . ,

n−1
n ,1}.

I With n = 5, the graph G has 36 ϕ-coherent labellings, while,
for n = 9, G has 100 ϕ-coherent labellings.

I For instance, σ = (0, 4/5, 3/5, 2/5, 2/5, 3/5) (meaning that
σ(A1) = 0, σ(A2) = 4/5, and so on) is a labelling for n = 5.



A many valued logic (of arguments)

I Given an argumentation graph G = 〈A,R, σ0, π〉, we
introduce a propositional language L, whose set of
propositional variables Prop is the set of arguments A.

I Language L contains the boolean connectives ∧, ∨, ¬ and
→, and that formulas are defined inductively, as usual.

I D is the truth degree set.
I We let ⊗, ⊕, � and 	 be the truth degree functions in D for

the connectives ∧, ∨, ¬ and→ (respectively).
I E.g., when D is [0,1] or Cn, ⊗, ⊕, � and 	 can be a t-norm,

s-norm, implication function, and negation function in some
system of many-valued logic.



Many-valued labellings as many-valued valuations

I We can regard a many-valued labelling σ : A → D of graph
G, assigning to each argument Ai ∈ A a truth degree in D,
as a many-valued valuation.

I σ is extended to all propositional formulas of L:
σ(α ∧ β) = σ(α)⊗ σ(β) σ(α ∨ β) = σ(α)⊕ σ(β)
σ(α→ β) = σ(α)� σ(β) σ(¬α) = 	σ(α)

I A labelling σ uniquely assigns a truth degree to any boolean
combination of arguments.

I We assume that the false argument ⊥ and the true
argument > are formulas of L and that σ(⊥) = 0D and
σ(>) = 1D, for all labellings σ.



Preferences over labellings in Σ

I Given a set of labellings Σ, we define a preference relation
<Ai on Σ, for each argument Ai ∈ A:

σ <Σ
Ai
σ′ iff σ(Ai) > σ′(Ai), for σ, σ′ ∈ Σ

σ is more plausible than σ′ as a situation for argument Ai to
holds.

I The preference relation <Σ
Ai

is a strict partial order relation
on Σ. We write <Ai .

I Similarly, for boolean combinations of arguments α:

σ <α σ
′ iff σ(α) > σ′(α).

I For example, σ = (1,4/5,0,1,1/5,1) is preferred to all
other labellings with respect to <A6 , being the only one with
σ(A6) = 1.



Preferences with respect to arguments



A many-valued logic with typicality

I Given an argumentation graph G, a gradual semantics S
with domain of argument valuation D, and the set of
labellings ΣS of G wrt S, we let the preferential
interpretation of G wrt S to be the pair IS

G = (D,ΣS, {<α}).
I Language LT is obtained by extending L with a unary

typicality operator T. Intuitively, “a sentence of the form T(α)
is understood to refer to the typical situations in which α
holds” [Booth et al., 2019]

I The typicality operator allows the formulation of conditional
implications (or defeasible implications) of the form
T(α)→ β, ”normally, if α then β”

I As in PTL also general implications α→ β, where α and β
may contain T



A many-valued logic with typicality

I Given a preferential interpretation I = (D,Σ), and a labelling
σ ∈ Σ, the valuation of a propositional formula T(α) in σ is
defined as follows:

σ(T(α)) =

{
σ(α) if there is no σ′ such that σ′ <α σ
0D otherwise

(1)

I When σ(T(A)) > 0D, σ is a labelling maximizing the
acceptability of argument A, among all the labellings in I.

Example
Under Gödel logic with standard involutive negation with n = 5,
the boolean combination of arguments A1 ∧ A2 ∧ ¬A3 has 4
maximally preferred labellings, with σ(A1 ∧ A2 ∧ ¬A3) = 4/5.
For such labellings, σ(T(A1 ∧ A2 ∧ ¬A3)) = 4/5, while it is equal
to 0 for all other labellings.



Labellings and gradual semantics

We may check, for instance:

T(granted loan)→ high salary ∧ being young ≥ 0.7



Graded implications

I Given a preferential interpretation I = (D,Σ), we can now
define the satisfiability in I of a graded implication, having
form α→ β ≥ l or α→ β ≤ u, with l and u in D and α and
β boolean combination of arguments.

I the truth degree of an implication α→ β wrt. I is defined as:

(α→ β)I = infσ∈Σ(σ(α)� σ(β)).

I I satisfies a graded implication α→ β ≥ t (written
I |= α→ β ≥ t) iff (α→ β)I ≥ t ;

I satisfies a graded implication α→ β ≤ u (written
I |= α→ β ≤ u) iff (α→ β)I ≤ u.



Graded implications:example

I The following graded conditionals are among the ones
satisfied in the preferential interpretation I = (C5,Σ, {<α}),
under the ϕ-coherent semantics:
T(A1 ∧ A2 ∧ ¬A3)→ A6 ≥ 1

(with 4 preferred labellings);
T(A1 ∧ A2)→ A6 ≥ 4/5 (12 preferred labellings);
T(A6)→ A1 ∧ A2 ≥ 4/5 (1 preferred labelling).



Properties

Given an interpretation IS = (S,ΣS), associated with an
argumentation semantics S of a graph G:
I Under the choice of combination functions as in Gödel logic,

interpretation IS = (S,ΣS) satisfies the KLM postulates of a
preferential consequence relation, suitably reformulated:

α |∼ β is interpreted as T(α)→ β ≥ 1
|= A→ B is interpreted as α→ β ≥ 1

I For a finite interpretation IS = (S,ΣS), satisfiability of a
graded conditional T(α)→ β ≥ k in IS can be decided in
polynomial time in the product of the size of the
interpretation and the size of the formula.



Temporal multi-preferential interpretations

I We allow temporal operators and the typicality operator to
occur in a graded implication. For instance,

lives in town ∧ young → T(3granted loan) ≥ 0.8
T(3granted loan)→ lives in town ∧ young ≥ 0.8.

I A temporal (multi-)preferential interpretation is a triple
I = 〈W, {<n

Ai
}n∈N, v〉 where:

I W is a non-empty set of worlds;
I each <n

Ai
⊆ W ×W is partial order onW;

I v : N×W × Prop −→ D is a valuation function assigning, at
each time point, a truth value to any propositional variable
(argument) in each world w ∈ W.



Temporal multi-preferential interpretations

The valuation function v can be extended to all formulas:

v(n,w ,⊥) = 0D v(n,w ,>) = 1D
v(n,w ,¬A) = 	v(n,w ,A)
v(n,w ,A ∧ B) = v(n,w ,A)⊗ v(n,w ,B)
v(n,w ,A ∨ B) = v(n,w ,A)⊕ v(n,w ,B)

v(n,w ,T(A)) =

{
v(n,w ,A) if @w ′ ∈ W s.t. w ′ <n

A w
0D otherwise

v(n,w ,©A) = v(n + 1,w ,A)
v(n,w ,3A) =

⊕
m≥n v(m,w ,A)

v(n,w ,2A) =
⊗

m≥n v(m,w ,A)

v(n,w ,AUB) =
⊕

m≥n(v(m,w ,B)⊗
⊗m−1

k=n v(k ,w ,A))

Following (Frigeri et al. 2014), one can introduce bounded
versions for 3, 2 and U



Temporal interpretations
We can see a temporal preferential interpretation
I = 〈W, {<n

Ai
}n∈N, v〉 as a sequence of (non-temporal)

preferential interpretations J0, J1, J2, . . . :

A temporal multi-preferential interpretation

J0 Jn Jn+1

……… ………



Temporal graded formulas

I Temporal graded implications are evaluated at time point 0:
I satisfies A→ B ≥ l if (A→ B)I,0 ≥ l

I Note that either I satisfies A→ B ≥ l or not: the
interpretation above of temporal graded implications in I at
a time point 0 is two-valued.

I Temporal graded formulas can be constructed by combining
graded implications:

α ::= A→ B ≥ l | A→ B ≥ l | α ∧ β | ¬α |
©α | 3α | 2α | αUβ,

Example:
2(T(professor)→ teaches U retired ≥ 0.7) ∧
(lives in town ∧ young → T(3granted loan) ≥ 0.8)



Conclusions and Related work

I We have proposed an approach for defeasible reasoning
over argumentation graphs in a temporal formalism.

I The temporal formalism allows the dynamics of a weighted
argumentation graph to be captured.

I As a case of study, for the ϕ-coherent semantics in the finite
valued case, the approach has been implemented through
an ASP encoding [ASPOCP 2023]

I Extending the ASP encodings to deal with temporal
preferential interpretations is a direction for future work.
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