Towards Temporal Many-valued Conditional Logics for Gradual Argumentation: a Preliminary Report

Mario Alviano¹ Laura Giordano² Daniele Theseider Dupré²

1 Università della Calabria, Italy

2 Università del Piemonte Orientale Italy

Al³ 2024: 8th Workshop on Advances in Argumentation in Al

(ロ) (同) (三) (三) (三) (○) (○)

Aims of the talk

- In [NMR 2023] we have proposed a general approach to define a many-valued preferential interpretation of gradual argumentation semantics.
 - it allows for conditional reasoning over arguments and boolean combination of arguments through the verification of graded (strict or defeasible) implications over an argumentation graph (with respect to some gradual semantics).
- In this paper we extend the formalism with the temporal operators of Linear Time Temporal Logic (LTL), thus defining a propositional many-valued temporal logic with typicality
 - to reason about the dynamics of a weighted argumentation graph;
 - to prove properties about the *transient behavior* of a (recurrent) neural network.

The approach

Given an *argumentation graph G* and a *gradual semantics S*, satisfying *weak conditions on the domain* of argument interpretation, we consider:

- a many-valued propositional logic with typicality, where arguments play the role of propositional variables (inspired to PTL and DLs with typicality)
- graded conditionals of the form T(α) → β ≥ I, meaning that "normally argument α implies argument β with degree at least I" (with α and β boolean combination of arguments):

 $T(granted_loan) \rightarrow high_salary \land young \ge 0.7$

- We build a multi-preferential interpretation I^S_G of a graph G under a semantic S
- Verification of conditional properties over I^S_G by model checking

Domain of argument interpretation and argumentation graphs: some assumptions

- We let the *domain of argument interpretation* be a set D, equipped with a *preorder relation* ≤ [Baroni et al. 2019]
- ► Let a *(weighted) argumentation graph* be a tuple:

 $\pmb{G} = \langle \mathcal{A}, \mathcal{R}, \sigma_{\pmb{0}}, \pi \rangle$

- A is a set of *arguments*,
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ a set of *edges*,
- $\sigma_0 : \mathcal{A} \to \mathcal{D}$ assigns a *base score* of arguments,
- $\pi : \mathcal{R} \to \mathbb{R}$ is a *weight function* assigning a positive or negative weight to edges.

A pair $(B, A) \in \mathcal{R}$ is regarded as a *support* of argument *B* to argument *A* when the weight $\pi(B, A)$ is positive and as an *attack* of argument *B* to *A* when $\pi(B, A)$ is negative.

Many-valued labellings and gradual semantics

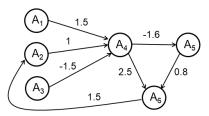
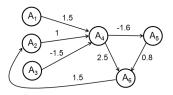


Figure: Example weighted argumentation graph *G* where the base score is not represented

- A many-valued labelling (or strength function) σ of G over D is a function σ : A → D, which assigns to each argument an acceptability degree (or a strength) in D.
- A gradual semantics S for an argumentation graph G identifies a set Σ^S of labellings of the graph G over a domain of argument valuation D (considering all possible σ₀).

Example



• φ -coherent semantics [NMR 2022]:

 $\sigma(A) = \begin{cases} \varphi(W^G_{\sigma}(A)) & \text{for all } A \in \mathcal{A} \text{ s.t. } R^-(A) \neq \emptyset \\ \sigma_0(A) & \text{otherwise} \end{cases}$

where
$$\mathcal{W}^{G}_{\sigma}(\mathcal{A}_{i}) = \sum_{\mathcal{A}_{j} \in \mathcal{R}^{-}(\mathcal{A}_{i})} \pi(\mathcal{A}_{j}, \mathcal{A}_{i}) \sigma(\mathcal{A}_{j})$$

- \mathcal{D} equal to $\mathcal{C}_n = \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}.$
- With n = 5, the graph G has 36 φ-coherent labellings, while, for n = 9, G has 100 φ-coherent labellings.
- For instance, $\sigma = (0, 4/5, 3/5, 2/5, 2/5, 3/5)$ (meaning that $\sigma(A_1) = 0$, $\sigma(A_2) = 4/5$, and so on) is a labelling for n = 5.

A many valued logic (of arguments)

- Given an argumentation graph G = (A, R, σ₀, π), we introduce a *propositional language* L, whose set of propositional variables *Prop is the set of arguments* A.
- Language L contains the boolean connectives ∧, ∨, ¬ and →, and that formulas are defined inductively, as usual.
- $\blacktriangleright \mathcal{D}$ is the *truth degree set*.
- We let ⊗, ⊕, ▷ and ⊖ be the *truth degree functions* in D for the connectives ∧, ∨, ¬ and → (respectively).
 - ► E.g., when D is [0, 1] or C_n, ⊗, ⊕, ▷ and ⊖ can be a t-norm, s-norm, implication function, and negation function in some system of many-valued logic.

Many-valued labellings as many-valued valuations

- We can regard a many-valued labelling σ : A → D of graph G, assigning to each argument A_i ∈ A a truth degree in D, as a many-valued valuation.
- ► σ is extended to all propositional formulas of \mathcal{L} : $\sigma(\alpha \land \beta) = \sigma(\alpha) \otimes \sigma(\beta)$ $\sigma(\alpha \lor \beta) = \sigma(\alpha) \oplus \sigma(\beta)$ $\sigma(\alpha \to \beta) = \sigma(\alpha) \triangleright \sigma(\beta)$ $\sigma(\neg \alpha) = \ominus \sigma(\alpha)$
- A labelling σ uniquely assigns a truth degree to any boolean combination of arguments.

We assume that the false argument ⊥ and the true argument ⊤ are formulas of ℒ and that σ(⊥) = 0_D and σ(⊤) = 1_D, for all labellings σ.

Preferences over labellings in Σ

► Given a set of labellings Σ , we define a *preference relation* $<_{A_i}$ on Σ , for each argument $A_i \in A$:

 $\sigma <^{\Sigma}_{A_i} \sigma' \text{ iff } \sigma(A_i) > \sigma'(A_i), \text{ for } \sigma, \sigma' \in \Sigma$

 σ is more plausible than σ' as a situation for argument A_i to holds.

- The preference relation <^Σ_{A_i} is a *strict partial order relation* on Σ. We write <_{A_i}.
- Similarly, for boolean combinations of arguments α :

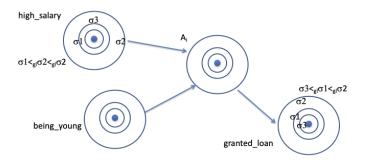
$$\sigma <_{\alpha} \sigma'$$
 iff $\sigma(\alpha) > \sigma'(\alpha)$.

For example, σ = (1, 4/5, 0, 1, 1/5, 1) is preferred to all other labellings with respect to <_{A₆}, being the only one with σ(A₆) = 1.

Preferences with respect to arguments

A multi-preferential interpretation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ



A many-valued logic with typicality

- Given an argumentation graph *G*, a gradual semantics *S* with domain of argument valuation *D*, and the set of labellings Σ^S of *G* wrt *S*, we let the preferential interpretation of *G* wrt *S* to be the pair *I*^S_G = (*D*, Σ^S, {<_α}).
- Language L^T is obtained by extending L with a unary typicality operator T. Intuitively, "a sentence of the form T(α) is understood to refer to the typical situations in which α holds" [Booth et al., 2019]
- The typicality operator allows the formulation of *conditional implications* (or *defeasible implications*) of the form T(α) → β, "normally, if α then β"
- As in PTL also general implications α → β, where α and β may contain T

A many-valued logic with typicality

Given a preferential interpretation *I* = (D, Σ), and a labelling σ ∈ Σ, the valuation of a propositional formula T(α) in σ is defined as follows:

$$\sigma(\mathbf{T}(\alpha)) = \begin{cases} \sigma(\alpha) & \text{if there is no } \sigma' \text{ such that } \sigma' <_{\alpha} \sigma \\ \mathbf{0}_{\mathcal{D}} & \text{otherwise} \end{cases}$$
(1)

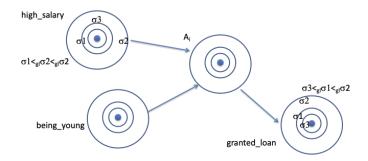
When σ(T(A)) > 0_D, σ is a labelling maximizing the acceptability of argument A, among all the labellings in I.

Example

Under Gödel logic with standard involutive negation with n = 5, the boolean combination of arguments $A_1 \wedge A_2 \wedge \neg A_3$ has 4 maximally preferred labellings, with $\sigma(A_1 \wedge A_2 \wedge \neg A_3) = 4/5$. For such labellings, $\sigma(\mathbf{T}(A_1 \wedge A_2 \wedge \neg A_3)) = 4/5$, while it is equal to 0 for all other labellings.

Labellings and gradual semantics

A multi-preferential interpretation



We may check, for instance:

 $T(granted_loan) \rightarrow high_salary \land being_young \ge 0.7$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Graded implications

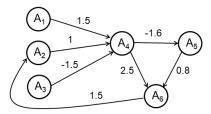
- Given a preferential interpretation *I* = (D, Σ), we can now define the satisfiability in *I* of a *graded implication*, having form α → β ≥ *I* or α → β ≤ u, with *I* and u in D and α and β boolean combination of arguments.
- the truth degree of an implication $\alpha \rightarrow \beta$ wrt. I is defined as:

$$(\alpha \to \beta)^{I} = \inf_{\sigma \in \Sigma} (\sigma(\alpha) \rhd \sigma(\beta)).$$

▶ *I satisfies a graded implication* $\alpha \rightarrow \beta \ge t$ (written $I \models \alpha \rightarrow \beta \ge t$) iff $(\alpha \rightarrow \beta)^{I} \ge t$;

I satisfies a graded implication $\alpha \rightarrow \beta \leq u$ (written $I \models \alpha \rightarrow \beta \leq u$) iff $(\alpha \rightarrow \beta)^I \leq u$.

Graded implications:example



The following graded conditionals are among the ones satisfied in the preferential interpretation *I* = (C₅, Σ, {<_α}), under the φ-coherent semantics:

 $\mathbf{T}(A_1 \land A_2 \land \neg A_3) \to A_6 \geq 1$

(with 4 preferred labellings);

 $\mathbf{T}(A_1 \land A_2) \rightarrow A_6 \ge 4/5$ (12 preferred labellings); $\mathbf{T}(A_6) \rightarrow A_1 \land A_2 \ge 4/5$ (1 preferred labelling).

Properties

Given an interpretation $I^{S} = (S, \Sigma^{S})$, associated with an argumentation semantics *S* of a graph *G*:

Under the choice of combination functions as in Gödel logic, interpretation I^S = (S, Σ^S) satisfies the *KLM postulates* of a preferential consequence relation, suitably reformulated:

 $\alpha \succ \beta$ is interpreted as $\mathbf{T}(\alpha) \rightarrow \beta \ge 1$ $\models \mathbf{A} \rightarrow \mathbf{B}$ is interpreted as $\alpha \rightarrow \beta \ge 1$

For a *finite* interpretation I^S = (S, Σ^S), *satisfiability* of a graded conditional T(α) → β ≥ k in I^S can be decided in *polynomial time* in the product of the size of the interpretation and the size of the formula.

Temporal multi-preferential interpretations

We allow temporal operators and the typicality operator to occur in a graded implication. For instance,

 $\begin{array}{l} \textit{lives_in_town \land young \rightarrow T(\diamondsuit granted_loan) \ge 0.8} \\ T(\diamondsuit granted_loan) \rightarrow \textit{lives_in_town \land young \ge 0.8.} \end{array}$

- ► A temporal (multi-)preferential interpretation is a triple $\mathcal{I} = \langle \mathcal{W}, \{<_{A_i}^n\}_{n \in \mathbb{N}}, \mathbf{v} \rangle$ where:
 - W is a non-empty set of worlds;
 - each $<_{A_i}^n \subseteq \mathcal{W} \times \mathcal{W}$ is partial order on \mathcal{W} ;
 - v : N × W × Prop → D is a valuation function assigning, at each time point, a truth value to any propositional variable (argument) in each world w ∈ W.

Temporal multi-preferential interpretations

The valuation function v can be extended to all formulas:

$$\begin{aligned} v(n, w, \bot) &= 0_{\mathcal{D}} \quad v(n, w, \top) = 1_{\mathcal{D}} \\ v(n, w, \neg A) &= \ominus v(n, w, A) \\ v(n, w, A \land B) &= v(n, w, A) \otimes v(n, w, B) \\ v(n, w, A \lor B) &= v(n, w, A) \oplus v(n, w, B) \\ v(n, w, \mathsf{T}(A)) &= \begin{cases} v(n, w, A) & \text{if } \nexists w' \in \mathcal{W} \text{ s.t. } w' <_A^n w \\ 0_{\mathcal{D}} & \text{otherwise} \end{cases} \\ v(n, w, \bigcirc A) &= v(n+1, w, A) \\ v(n, w, \oslash A) &= \bigoplus_{m \ge n} v(m, w, A) \\ v(n, w, \Box A) &= \bigotimes_{m \ge n} v(m, w, A) \\ v(n, w, A UB) &= \bigoplus_{m \ge n} (v(m, w, B) \otimes \bigotimes_{k=n}^{m-1} v(k, w, A)) \end{aligned}$$

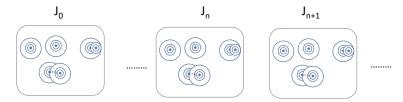
Following (Frigeri et al. 2014), one can introduce bounded versions for $\diamondsuit,\,\Box$ and $\mathcal U$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Temporal interpretations

We can see a temporal preferential interpretation $\mathcal{I} = \langle \mathcal{W}, \{<_{A_i}^n\}_{n \in \mathbb{N}}, v \rangle$ as a sequence of (non-temporal) preferential interpretations J^0, J^1, J^2, \ldots :

A temporal multi-preferential interpretation



(日) (日) (日) (日) (日) (日) (日)

Temporal graded formulas

- Temporal graded implications are evaluated at time point 0: *I* satisfies A → B ≥ I if (A → B)^{I,0} ≥ I
- Note that either I satisfies A → B ≥ I or not: the interpretation above of temporal graded implications in I at a time point 0 is two-valued.
- Temporal graded formulas can be constructed by combining graded implications:

$$\alpha ::= \mathbf{A} \to \mathbf{B} \ge \mathbf{I} \mid \mathbf{A} \to \mathbf{B} \ge \mathbf{I} \mid \alpha \land \beta \mid \neg \alpha \mid \\ \bigcirc \alpha \mid \Diamond \alpha \mid \Box \alpha \mid \alpha \mathcal{U}\beta,$$

Example:

 $\Box(\mathbf{T}(\textit{professor}) \rightarrow \textit{teaches } \mathcal{U} \textit{ retired } \geq 0.7) \land \\ (\textit{lives_in_town} \land \textit{young} \rightarrow \mathbf{T}(\diamond \textit{granted_loan}) \geq 0.8)$

Conclusions and Related work

- We have proposed an approach for *defeasible reasoning* over argumentation graphs in a *temporal formalism*.
- The temporal formalism allows the dynamics of a weighted argumentation graph to be captured.
- As a case of study, for the φ-coherent semantics in the finite valued case, the approach has been implemented through an ASP encoding [ASPOCP 2023]

(ロ) (同) (三) (三) (三) (○) (○)

Extending the ASP encodings to deal with temporal preferential interpretations is a direction for future work.